410 lines
17 KiB
Python
410 lines
17 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""
|
||
神经网络
|
||
"""
|
||
|
||
# 导入模块
|
||
from typing import List, Literal
|
||
import numpy
|
||
|
||
|
||
class NeuralNetwork:
|
||
"""
|
||
神经网络
|
||
"""
|
||
|
||
HIDDEN_ACTIVATES = ["relu"]
|
||
OUTPUT_ACTIVATES = ["linear", "softmax"]
|
||
|
||
def __init__(
|
||
self,
|
||
structure: List[int],
|
||
hidden_activate: Literal["relu"] = "relu",
|
||
output_activate: Literal["linear", "softmax"] = "linear",
|
||
epsilon: float = 1e-9,
|
||
):
|
||
"""
|
||
初始化
|
||
:param structure: 神经网络结构,例如[2, 10, 1]表示2层神经网络,具体为输入层2个神经元、隐含层10个神经元、输出层1个神经元
|
||
:param hidden_activate: 隐含层的激活函数,默认为relu
|
||
:param output_activate: 输出层的激活函数,默认为linear
|
||
:param epsilon: 极小值,默认为1e-9
|
||
"""
|
||
print("正在初始化神经网络...", end="")
|
||
|
||
# 初始化神经网络结构
|
||
self.structure = structure
|
||
# 神经网络层数
|
||
self.layer_counts = (
|
||
len(structure) - 1
|
||
) # 定义第0层为输入层,第L层为输出层(L为神经网络层数),第l层为隐含层(l=1,2,...,L-1)
|
||
|
||
if hidden_activate not in self.HIDDEN_ACTIVATES:
|
||
raise ValueError(f"该隐含层激活函数 {hidden_activate} 暂不支持")
|
||
self.hidden_activate = hidden_activate
|
||
|
||
if output_activate not in self.OUTPUT_ACTIVATES:
|
||
raise ValueError(f"该输出层激活函数 {output_activate} 暂不支持")
|
||
self.output_activate = output_activate
|
||
|
||
self.paramters = {}
|
||
# 就隐含层和输出层初始化神经网络参数
|
||
for layer_index in range(1, self.layer_counts + 1):
|
||
# 上一层和当前层神经元数量
|
||
previous_layer_neuron_counts, current_layer_neuron_counts = (
|
||
self.structure[layer_index - 1],
|
||
self.structure[layer_index],
|
||
)
|
||
self.paramters[layer_index] = {
|
||
"weight": numpy.random.randn(
|
||
current_layer_neuron_counts, previous_layer_neuron_counts
|
||
)
|
||
* (
|
||
numpy.sqrt(2 / previous_layer_neuron_counts)
|
||
if layer_index < self.layer_counts
|
||
else (
|
||
numpy.sqrt(1 / previous_layer_neuron_counts)
|
||
if self.output_activate == "linear"
|
||
else numpy.sqrt(
|
||
2
|
||
/ (
|
||
previous_layer_neuron_counts
|
||
+ current_layer_neuron_counts
|
||
)
|
||
)
|
||
)
|
||
), # 权重,权重维度为[当前层神经元数量,上一层神经元数量]、输入维度为[上一层神经元数量,样本数]以适配加权输=权重*输入+偏移。隐含层使用He初始化权重方法、输出层激活函数若为linear则使用标准Xavier初始化权重方法否则使用改进Xavier初始化权重方法
|
||
"bias": numpy.zeros((current_layer_neuron_counts, 1)), # 偏移
|
||
"gamma": numpy.ones(
|
||
(current_layer_neuron_counts, 1)
|
||
), # 批标准化的缩放因子
|
||
"beta": numpy.zeros(
|
||
(current_layer_neuron_counts, 1)
|
||
), # 批标准化的偏移因子
|
||
"activate": (
|
||
self.hidden_activate
|
||
if layer_index < self.layer_counts
|
||
else self.output_activate
|
||
), # 激活函数
|
||
}
|
||
|
||
self.epsilon = epsilon
|
||
|
||
print("已完成")
|
||
|
||
def _forward_propagate(self, X: numpy.ndarray) -> numpy.ndarray:
|
||
"""
|
||
前向传播
|
||
:param X: 输入层的输入,维度为[输入特征数, 样本数]
|
||
:return: 输出层的输出预测,维度为[输出特征数, 样本数]
|
||
"""
|
||
activation = X # 将输入层的输入作为第0层的输出
|
||
for layer_index in range(1, self.layer_counts + 1):
|
||
x = activation # 将上一层的输出作为当前层的输入
|
||
self.paramters[layer_index].update(
|
||
{
|
||
"weighted_input": (
|
||
weighted_input := numpy.dot(
|
||
self.paramters[layer_index]["weight"], x
|
||
)
|
||
), # 加权输入
|
||
"weighted_input_average": (
|
||
weighted_input_average := numpy.mean(
|
||
weighted_input, axis=1, keepdims=True
|
||
)
|
||
), # 加权输入的平均值
|
||
"weighted_input_standard_deviation": (
|
||
weighted_input_standard_deviation := numpy.sqrt(
|
||
numpy.var(weighted_input, ddof=0, axis=1, keepdims=True)
|
||
+ self.epsilon
|
||
)
|
||
), # 加权输入的标准差
|
||
"batch_normalized_weighted_input": (
|
||
batch_normalized_weighted_input := (
|
||
weighted_input - weighted_input_average
|
||
)
|
||
* self.paramters[layer_index]["gamma"]
|
||
/ weighted_input_standard_deviation
|
||
+ self.paramters[layer_index]["beta"]
|
||
), # 就加权输入批标准化
|
||
"activation": (
|
||
activation := self._activate(
|
||
activate=self.paramters[layer_index]["activate"],
|
||
weighted_input=batch_normalized_weighted_input,
|
||
)
|
||
), # 输出
|
||
}
|
||
)
|
||
|
||
y_predict = activation # 将第L层(输出层)的输出作为输出层的输出预测
|
||
return y_predict
|
||
|
||
def _activate(
|
||
self,
|
||
activate: Literal["relu", "linear", "softmax"],
|
||
weighted_input: numpy.ndarray,
|
||
) -> numpy.ndarray:
|
||
"""
|
||
根据激活函数计算输出
|
||
:param activate: 激活函数
|
||
:param weighted_input: 加权输入
|
||
:return: 输出
|
||
"""
|
||
match activate:
|
||
case "relu":
|
||
return numpy.maximum(0, weighted_input)
|
||
case "linear":
|
||
return weighted_input
|
||
case "softmax":
|
||
# 加权输入的指数项
|
||
e_weighted_input = numpy.exp(
|
||
weighted_input - numpy.max(weighted_input, axis=0, keepdims=True)
|
||
)
|
||
return e_weighted_input / numpy.sum(
|
||
e_weighted_input, axis=0, keepdims=True
|
||
)
|
||
|
||
def _calculate_loss(
|
||
self,
|
||
y_true: numpy.ndarray,
|
||
y_predict: numpy.ndarray,
|
||
) -> numpy.floating:
|
||
"""
|
||
计算损失
|
||
:param y_true: 输出层的输出真实,维度为[输出特征数, 样本数]
|
||
:param y_predict: 输出层的输出预测,维度为[输出特征数, 样本数]
|
||
:return: 损失值
|
||
"""
|
||
return (
|
||
0.5 * numpy.mean(numpy.square(y_true - y_predict))
|
||
if self.paramters[self.layer_counts]["activate"] == "linear"
|
||
else -1
|
||
* numpy.mean(
|
||
numpy.sum(
|
||
y_true
|
||
* numpy.log(numpy.clip(y_predict, self.epsilon, 1 - self.epsilon)),
|
||
axis=0,
|
||
)
|
||
)
|
||
) # 若输出层的激活函数为linear则损失函数使用均方误差否则使用交叉熵
|
||
|
||
def _backward_propagate(
|
||
self,
|
||
X: numpy.ndarray,
|
||
y_true: numpy.ndarray,
|
||
y_predict: numpy.ndarray,
|
||
) -> None:
|
||
"""
|
||
后向传播
|
||
:param X: 输入层的输入,维度为[输入特征数, 样本数]
|
||
:param y_true: 输出层的输出真实,维度为[输出特征数, 样本数]
|
||
:param y_predict: 输出层的输出预测,维度为[输出特征数, 样本数]
|
||
:return: 无
|
||
"""
|
||
sample_counts = X.shape[1] # 样本数
|
||
|
||
# 损失函数对输出层的就加权输入批标准化的梯度
|
||
self.paramters[self.layer_counts]["delta_batch_normalized_weighted_input"] = (
|
||
y_predict - y_true
|
||
) / sample_counts # 均方误差和交叉熵对输出层的输出预测的梯度是相同的
|
||
|
||
for layer_index in range(self.layer_counts, 0, -1):
|
||
self.paramters[layer_index].update(
|
||
{
|
||
"delta_gamma": numpy.sum(
|
||
self.paramters[layer_index][
|
||
"delta_batch_normalized_weighted_input"
|
||
]
|
||
* (
|
||
self.paramters[layer_index]["weighted_input"]
|
||
- self.paramters[layer_index]["weighted_input_average"]
|
||
)
|
||
/ self.paramters[layer_index][
|
||
"weighted_input_standard_deviation"
|
||
],
|
||
axis=1,
|
||
keepdims=True,
|
||
), # 批标准化的缩放因子的梯度
|
||
"delta_beta": numpy.sum(
|
||
self.paramters[layer_index][
|
||
"delta_batch_normalized_weighted_input"
|
||
],
|
||
axis=1,
|
||
keepdims=True,
|
||
), # 批标准化的偏移因子的梯度
|
||
"delta_weighted_input": (
|
||
delta_weighted_input := (
|
||
sample_counts
|
||
* self.paramters[layer_index]["gamma"]
|
||
* self.paramters[layer_index][
|
||
"delta_batch_normalized_weighted_input"
|
||
]
|
||
- numpy.sum(
|
||
self.paramters[layer_index]["gamma"]
|
||
* self.paramters[layer_index][
|
||
"delta_batch_normalized_weighted_input"
|
||
],
|
||
axis=1,
|
||
keepdims=True,
|
||
)
|
||
- (
|
||
(
|
||
self.paramters[layer_index]["weighted_input"]
|
||
- self.paramters[layer_index][
|
||
"weighted_input_average"
|
||
]
|
||
)
|
||
/ self.paramters[layer_index][
|
||
"weighted_input_standard_deviation"
|
||
]
|
||
)
|
||
* numpy.sum(
|
||
self.paramters[layer_index]["gamma"]
|
||
* self.paramters[layer_index][
|
||
"delta_batch_normalized_weighted_input"
|
||
]
|
||
* (
|
||
(
|
||
self.paramters[layer_index]["weighted_input"]
|
||
- self.paramters[layer_index][
|
||
"weighted_input_average"
|
||
]
|
||
)
|
||
/ self.paramters[layer_index][
|
||
"weighted_input_standard_deviation"
|
||
]
|
||
),
|
||
axis=1,
|
||
keepdims=True,
|
||
)
|
||
)
|
||
* (1.0 / sample_counts)
|
||
/ self.paramters[layer_index][
|
||
"weighted_input_standard_deviation"
|
||
]
|
||
), # 加权输入的梯度
|
||
"delta_weight": numpy.dot(
|
||
delta_weighted_input,
|
||
(
|
||
X
|
||
if layer_index == 1
|
||
else self.paramters[layer_index - 1]["activation"]
|
||
).T,
|
||
), # 权重的梯度
|
||
"delta_bias": numpy.sum(
|
||
delta_weighted_input,
|
||
axis=1,
|
||
keepdims=True,
|
||
), # 偏置的梯度
|
||
}
|
||
)
|
||
|
||
if layer_index > 1:
|
||
self.paramters[layer_index - 1][
|
||
"delta_batch_normalized_weighted_input"
|
||
] = numpy.dot(
|
||
self.paramters[layer_index]["weight"].T,
|
||
self.paramters[layer_index]["delta_weighted_input"],
|
||
) * (
|
||
self.paramters[layer_index - 1]["batch_normalized_weighted_input"]
|
||
> 0
|
||
).astype(
|
||
numpy.float32
|
||
)
|
||
|
||
def train(
|
||
self,
|
||
X: numpy.ndarray,
|
||
y_true: numpy.ndarray,
|
||
target_loss: float = 1e-3,
|
||
epochs: int = 200,
|
||
learning_rate: float = 0.001,
|
||
) -> None:
|
||
"""
|
||
训练神经网络
|
||
:param X: 输入层的输入
|
||
:param y_true: 输出层的输出真实
|
||
:param target_loss: 目标损失
|
||
:param epochs: 学习轮数
|
||
:param learning_rate: 学习率
|
||
:return: 无
|
||
"""
|
||
print(
|
||
f"开始训练:目标损失为 {target_loss},学习轮数为 {epochs},学习率为 {learning_rate}..."
|
||
)
|
||
# 标准化
|
||
X = (X - numpy.mean(X, axis=1, keepdims=True)) / (
|
||
numpy.std(X, axis=1, keepdims=True) + self.epsilon
|
||
)
|
||
epoch = 1
|
||
while True:
|
||
# 前向传播
|
||
y_predict = self._forward_propagate(X=X)
|
||
|
||
loss = self._calculate_loss(y_true=y_true, y_predict=y_predict)
|
||
if loss < target_loss:
|
||
print(
|
||
f" 第 {epoch} 轮损失为 {loss},已达到目标损失 {target_loss},训练结束"
|
||
)
|
||
break
|
||
if epoch >= epochs:
|
||
print(
|
||
f" 第 {epoch} 轮损失为 {loss},已达到最大学习轮数 {epochs},训练结束"
|
||
)
|
||
break
|
||
if epoch % 50 == 0:
|
||
print(f" 第 {epoch} 轮损失为 {loss},继续训练...")
|
||
|
||
# 后向传播
|
||
self._backward_propagate(X=X, y_true=y_true, y_predict=y_predict)
|
||
|
||
# 更新神经网络参数
|
||
self._update_parameters(learning_rate=learning_rate)
|
||
|
||
epoch += 1
|
||
|
||
for idx in numpy.random.choice(X.shape[1], size=10, replace=False):
|
||
y_true_val = y_true[0, idx]
|
||
y_pred_val = y_predict[0, idx]
|
||
error = abs(y_true_val - y_pred_val)
|
||
print(f"{idx:<10} {y_true_val:<15.4f} {y_pred_val:<15.4f} {error:<15.4f}")
|
||
|
||
def _update_parameters(self, learning_rate: float) -> None:
|
||
"""
|
||
更新神经网络参数
|
||
:param learning_rate: 学习率
|
||
:return: 无
|
||
"""
|
||
for layer_index in range(1, self.layer_counts + 1):
|
||
self.paramters[layer_index].update(
|
||
{
|
||
"weight": self.paramters[layer_index]["weight"]
|
||
- self.paramters[layer_index]["delta_weight"] * learning_rate,
|
||
"bias": self.paramters[layer_index]["bias"]
|
||
- self.paramters[layer_index]["delta_bias"] * learning_rate,
|
||
"gamma": self.paramters[layer_index]["gamma"]
|
||
- self.paramters[layer_index]["delta_gamma"] * learning_rate,
|
||
"beta": self.paramters[layer_index]["beta"]
|
||
- self.paramters[layer_index]["delta_beta"] * learning_rate,
|
||
}
|
||
)
|
||
|
||
|
||
# 测试代码
|
||
if __name__ == "__main__":
|
||
# 生成测试数据(回归任务)
|
||
numpy.random.seed(42) # 设置随机种子保证可复现
|
||
X = numpy.random.randn(2, 100) * 5
|
||
# 真实函数:y = 2*x1 + 3*x2 + 1 (加噪声)
|
||
y_true = 2 * X[0:1, :]**2 + 3 * X[1:2, :] + 1 + numpy.random.randn(1, 100) * 0.1
|
||
|
||
# 创建并训练神经网络
|
||
neural_network = NeuralNetwork(
|
||
structure=[2, 200, 100, 50, 1], # 2输入,10隐藏神经元,1输出
|
||
)
|
||
|
||
# 训练
|
||
neural_network.train(
|
||
X=X, y_true=y_true, target_loss=0.001, epochs=10000, learning_rate=0.001
|
||
)
|