499 lines
13 KiB
Python
499 lines
13 KiB
Python
# -*- coding: utf-8 -*-
|
||
|
||
"""
|
||
脚本说明:
|
||
本脚本用于KANO需求分析,能够处理问卷数据并输出需求分类结果
|
||
"""
|
||
|
||
import pandas
|
||
|
||
import prettytable
|
||
|
||
|
||
print("1 打开并读取Excel文件...", end="")
|
||
|
||
try:
|
||
dataset = pandas.read_excel(io="KANO模型客户调研问卷.xlsx", sheet_name="问卷结果")
|
||
|
||
# 选项范围
|
||
alternatives = ["非常满意", "理应如此", "无所谓", "勉强接受", "不满意"]
|
||
|
||
# 数据清洗
|
||
dataset = (
|
||
dataset.iloc[
|
||
:, 3:
|
||
] # 原始数据第一列为编号、第二列为提交人、第三列为提交时间,从第四列到最后一列为选项,删除第一列至第三列
|
||
.loc[lambda dataframe: dataframe.nunique(axis=1) != 1] # 删除相同选项的样本
|
||
.map(
|
||
lambda cell: cell if cell in alternatives else pandas.NA
|
||
) # 检查是否在选项范围,若不在选项范围则置为缺失值
|
||
.dropna(axis="index", how="any") # 删除缺失值
|
||
)
|
||
|
||
# 统计样本数
|
||
samples_size = dataset.shape[0]
|
||
# 若样本数为0则抛出异常
|
||
if samples_size == 0:
|
||
raise Exception("样本数为0")
|
||
|
||
# 统计列数
|
||
columns_counts = dataset.shape[1]
|
||
# 若列数非奇数则抛出异常
|
||
if columns_counts % 2 != 0:
|
||
raise Exception("列数为奇数")
|
||
|
||
print(f"已完成,样本数为{samples_size}")
|
||
|
||
except Exception as exception:
|
||
print(f"发生异常:{str(exception)}")
|
||
exit()
|
||
|
||
# 读取问卷题目和答案(从第7列开始为题目或答案)
|
||
DataSet = DataSet.iloc[:, 6:]
|
||
|
||
# 统计数据集中样本数量和题目数量
|
||
Sample_Size, Question_Amount = DataSet.shape
|
||
|
||
# 判断题目数量是否为偶数,若为偶数则计算问卷中涉及需求数量,若为奇数则终止脚本
|
||
if Question_Amount % 2 == 0:
|
||
|
||
# 计算问卷中涉及需求数量
|
||
Requirement_Amount = int(Question_Amount / 2)
|
||
|
||
else:
|
||
|
||
print("题目数量为奇数,请检查")
|
||
print("")
|
||
|
||
exit()
|
||
|
||
print(
|
||
"数据集中包含 %d 份样本, %d 个问题(涉及 %d 个需求)"
|
||
% (Sample_Size, Question_Amount, Requirement_Amount)
|
||
)
|
||
print("")
|
||
|
||
print("*" * 100)
|
||
print("")
|
||
|
||
print("2 数据预处理")
|
||
print("")
|
||
|
||
print("2.1 检查并删除不规范样本")
|
||
print("")
|
||
|
||
# 定义问卷中备选答案列表
|
||
Alternatives = ["我很喜欢", "理所应当", "无所谓", "勉强接受", "我很不喜欢"]
|
||
|
||
# 检查答案是否在指定范围,若否则将该答案定义为空值
|
||
DataSet = DataSet.applymap(lambda x: x if x in Alternatives else None)
|
||
|
||
# 删除包含缺失值的样本
|
||
DataSet.dropna(axis="index", how="any", inplace=True)
|
||
|
||
# 删除答案全部相同的样本
|
||
DataSet = DataSet[DataSet.apply(pandas.Series.nunique, axis="columns") != 1]
|
||
|
||
# 统计有效样本数量
|
||
Sample_Size = DataSet.shape[0]
|
||
|
||
print("处理后,有效样本数量为 %d 份" % (Sample_Size))
|
||
print("")
|
||
|
||
print("*" * 100)
|
||
print("")
|
||
|
||
print("3 数据处理")
|
||
print("")
|
||
|
||
Requirement_Labels = DataSet.columns.tolist()
|
||
|
||
# 通过问题截取需求名称(截取'有'右侧、','左侧字符串)
|
||
Requirement_Labels = [
|
||
x[x.find("有") + 1 : x.find(",")]
|
||
for x in Requirement_Labels
|
||
if isinstance(x, str) and "具有" in x
|
||
]
|
||
|
||
print("3.1 绘制KANO评价结果分类对照表")
|
||
print("")
|
||
|
||
for Question_Number in range(Requirement_Amount):
|
||
|
||
# 创建KANO评价结果分类对照表
|
||
KANO = pandas.DataFrame(data=[], index=Alternatives, columns=Alternatives)
|
||
|
||
for Column_Label in Alternatives:
|
||
|
||
for Index_Label in Alternatives:
|
||
|
||
# 统计并赋值
|
||
KANO.loc[Index_Label, Column_Label] = DataSet.loc[
|
||
(DataSet.iloc[:, Question_Number].isin([Index_Label]))
|
||
& (DataSet.iloc[:, Question_Number + 1].isin([Column_Label])),
|
||
:,
|
||
].shape[0]
|
||
|
||
# 修改行名
|
||
KANO.index = [
|
||
"Provide_Like",
|
||
"Provide_Should",
|
||
"Provide_Indifferent",
|
||
"Provide_Grudging",
|
||
"Provide_Hate",
|
||
]
|
||
|
||
# 重置索引
|
||
KANO.reset_index(inplace=True)
|
||
|
||
# 修改列名
|
||
KANO.columns = [
|
||
"",
|
||
"Not_Provide_Like",
|
||
"Not_Provide_Should",
|
||
"Not_Provide_Indifferent",
|
||
"Not_Provide_Grudging",
|
||
"Not_Provide_Hate",
|
||
]
|
||
|
||
# 打印表格
|
||
|
||
PrintTable = prettytable.PrettyTable()
|
||
|
||
PrintTable.field_names = KANO.columns.tolist()
|
||
|
||
for Index in KANO.index.tolist():
|
||
|
||
PrintTable.add_row(KANO.loc[Index])
|
||
|
||
PrintTable.align = "r"
|
||
|
||
PrintTable.align[""] = "l"
|
||
|
||
PrintTable.float_format = "."
|
||
|
||
print(
|
||
"附表 需求%d:%s的KANO评价结果分类对照表:"
|
||
% (Question_Number + 1, Requirement_Labels[Question_Number])
|
||
)
|
||
|
||
print(PrintTable)
|
||
|
||
print("")
|
||
|
||
print("字段说明:")
|
||
|
||
print(
|
||
"1)Not_Provide_Like为不提供该需求、用户表示“我很喜欢”,Not_Provide_Should为不提供该需求、用户表示“理所应当”,Not_Provide_Indifferent为不提供该需求、用户表示“无所谓”,Not_Provide_Grudging为不提供该需求、用户表示“勉强接受”,Not_Provide_Hate为不提供该需求、用户表示“我很不喜欢”。"
|
||
)
|
||
|
||
print(
|
||
"1)Provide_Like为提供该需求、用户表示“我很喜欢”,Provide_Should为提供该需求、用户表示“理所应当”,Provide_Indifferent为提供该需求、用户表示“无所谓”,Provide_Grudging为提供该需求、用户表示“勉强接受”,Provide_Hate为不提供该需求、用户表示“我很不喜欢”。"
|
||
)
|
||
|
||
print("")
|
||
|
||
print("3.2 计算KANO评价维度")
|
||
print("")
|
||
|
||
# 创建KANO各维度分数表
|
||
KANO_Report = pandas.DataFrame(
|
||
data=[],
|
||
columns=[
|
||
"Requirement_Label",
|
||
"A_Score",
|
||
"O_Score",
|
||
"M_Score",
|
||
"I_Score",
|
||
"R_Score",
|
||
"Q_Score",
|
||
],
|
||
dtype="float",
|
||
)
|
||
|
||
KANO_Report["Requirement_Label"] = Requirement_Labels
|
||
|
||
for Question_Number in range(Requirement_Amount):
|
||
|
||
# 计算兴奋型需求分数
|
||
A_Score = round(
|
||
DataSet.loc[
|
||
(DataSet.iloc[:, Question_Number].isin(["我很喜欢"]))
|
||
& (
|
||
DataSet.iloc[:, Question_Number + 1].isin(
|
||
["理所应当", "无所谓", "勉强接受"]
|
||
)
|
||
),
|
||
:,
|
||
].shape[0]
|
||
/ Sample_Size
|
||
* 100,
|
||
2,
|
||
)
|
||
|
||
KANO_Report.loc[Question_Number, "A_Score"] = A_Score
|
||
|
||
# 计算期望型需求分数
|
||
O_Score = round(
|
||
DataSet.loc[
|
||
(DataSet.iloc[:, Question_Number].isin(["我很喜欢"]))
|
||
& (DataSet.iloc[:, Question_Number + 1].isin(["我很不喜欢"])),
|
||
:,
|
||
].shape[0]
|
||
/ Sample_Size
|
||
* 100,
|
||
2,
|
||
)
|
||
|
||
KANO_Report.loc[Question_Number, "O_Score"] = O_Score
|
||
|
||
# 计算必备型需求分数
|
||
M_Score = round(
|
||
DataSet.loc[
|
||
(DataSet.iloc[:, Question_Number].isin(["理所应当", "无所谓", "勉强接受"]))
|
||
& (DataSet.iloc[:, Question_Number + 1].isin(["我很不喜欢"])),
|
||
:,
|
||
].shape[0]
|
||
/ Sample_Size
|
||
* 100,
|
||
2,
|
||
)
|
||
|
||
KANO_Report.loc[Question_Number, "M_Score"] = M_Score
|
||
|
||
# 计算无差型需求分数
|
||
I_Score = round(
|
||
DataSet.loc[
|
||
(DataSet.iloc[:, Question_Number].isin(["理所应当", "无所谓", "勉强接受"]))
|
||
& (
|
||
DataSet.iloc[:, Question_Number + 1].isin(
|
||
["理所应当", "无所谓", "勉强接受"]
|
||
)
|
||
),
|
||
:,
|
||
].shape[0]
|
||
/ Sample_Size
|
||
* 100,
|
||
2,
|
||
)
|
||
|
||
KANO_Report.loc[Question_Number, "I_Score"] = I_Score
|
||
|
||
# 计算反向型需求分数
|
||
R_Score = round(
|
||
DataSet.loc[
|
||
(
|
||
DataSet.iloc[:, Question_Number].isin(
|
||
["理所应当", "无所谓", "勉强接受", "我很不喜欢"]
|
||
)
|
||
)
|
||
& (
|
||
DataSet.iloc[:, Question_Number + 1].isin(
|
||
["我很喜欢", "理所应当", "无所谓", "勉强接受"]
|
||
)
|
||
),
|
||
:,
|
||
].shape[0]
|
||
/ Sample_Size
|
||
* 100
|
||
- I_Score,
|
||
2,
|
||
)
|
||
|
||
KANO_Report.loc[Question_Number, "R_Score"] = R_Score
|
||
|
||
# 计算可疑型需求分数
|
||
Q_Score = round(
|
||
DataSet.loc[
|
||
(DataSet.iloc[:, Question_Number].isin(["我很喜欢"]))
|
||
& (DataSet.iloc[:, Question_Number + 1].isin(["我很喜欢"])),
|
||
:,
|
||
].shape[0]
|
||
/ Sample_Size
|
||
* 100
|
||
+ DataSet.loc[
|
||
(DataSet.iloc[:, Question_Number].isin(["我很不喜欢"]))
|
||
& (DataSet.iloc[:, Question_Number + 1].isin(["我很不喜欢"])),
|
||
:,
|
||
].shape[0]
|
||
/ Sample_Size
|
||
* 100,
|
||
2,
|
||
)
|
||
|
||
KANO_Report.loc[Question_Number, "Q_Score"] = Q_Score
|
||
|
||
# 打印表格
|
||
|
||
PrintTable = prettytable.PrettyTable()
|
||
|
||
PrintTable.field_names = KANO_Report.columns.tolist()
|
||
|
||
for Index in KANO_Report.index.tolist():
|
||
|
||
PrintTable.add_row(KANO_Report.loc[Index])
|
||
|
||
PrintTable.align["Requirement_Label"] = "l"
|
||
|
||
PrintTable.align["A_Score"] = "r"
|
||
|
||
PrintTable.align["O_Score"] = "r"
|
||
|
||
PrintTable.align["M_Score"] = "r"
|
||
|
||
PrintTable.align["I_Score"] = "r"
|
||
|
||
PrintTable.align["R_Score"] = "r"
|
||
|
||
PrintTable.align["Q_Score"] = "r"
|
||
|
||
PrintTable.align["Better_Score"] = "r"
|
||
|
||
PrintTable.align["Worse_Score"] = "r"
|
||
|
||
PrintTable.float_format["A_Score"] = ".2"
|
||
|
||
PrintTable.float_format["O_Score"] = ".2"
|
||
|
||
PrintTable.float_format["M_Score"] = ".2"
|
||
|
||
PrintTable.float_format["I_Score"] = ".2"
|
||
|
||
PrintTable.float_format["R_Score"] = ".2"
|
||
|
||
PrintTable.float_format["Q_Score"] = ".2"
|
||
|
||
PrintTable.float_format["Better_Score"] = ".2"
|
||
|
||
PrintTable.float_format["Worse_Score"] = ".2"
|
||
|
||
print("附表 各需求的KANO评价维度计算结果:")
|
||
|
||
print(
|
||
PrintTable.get_string(
|
||
fields=[
|
||
"Requirement_Label",
|
||
"A_Score",
|
||
"O_Score",
|
||
"M_Score",
|
||
"I_Score",
|
||
"R_Score",
|
||
"Q_Score",
|
||
]
|
||
)
|
||
)
|
||
|
||
print("字段说明:")
|
||
|
||
print(
|
||
"1)Requirement_Label为需求名称,A_Score为兴奋型需求分数,O_Score为期望型需求分数,M_Score为必备型需求分数,I_Score为无差型需求分数,R_Score为反向型需求分数,Q_Score为可疑型需求分数。"
|
||
)
|
||
|
||
print("")
|
||
|
||
print("3.3 定义需求类型和Better-Worse分数")
|
||
print("")
|
||
|
||
# 以KANO评价维度中最高分定义需求类型
|
||
Requirement_Types = list(
|
||
KANO_Report[
|
||
["A_Score", "O_Score", "M_Score", "I_Score", "R_Score", "Q_Score"]
|
||
].idxmax(axis="columns")
|
||
)
|
||
|
||
# 通过列名截取需求类型(第一位、'_'左侧字符串)
|
||
Requirement_Types = [
|
||
x[0 : x.find("_")] for x in Requirement_Types if isinstance(x, str)
|
||
]
|
||
|
||
KANO_Report["Requirement_Type"] = Requirement_Types
|
||
|
||
# 计算Better分数
|
||
KANO_Report["Better_Score"] = (
|
||
(KANO_Report["A_Score"] + KANO_Report["O_Score"])
|
||
/ (
|
||
KANO_Report["A_Score"]
|
||
+ KANO_Report["O_Score"]
|
||
+ KANO_Report["M_Score"]
|
||
+ KANO_Report["I_Score"]
|
||
)
|
||
* 100
|
||
)
|
||
|
||
# 计算Worse分数
|
||
KANO_Report["Worse_Score"] = (
|
||
-1
|
||
* (KANO_Report["O_Score"] + KANO_Report["M_Score"])
|
||
/ (
|
||
KANO_Report["A_Score"]
|
||
+ KANO_Report["O_Score"]
|
||
+ KANO_Report["M_Score"]
|
||
+ KANO_Report["I_Score"]
|
||
)
|
||
* 100
|
||
)
|
||
|
||
# 打印表格
|
||
|
||
PrintTable = prettytable.PrettyTable()
|
||
|
||
PrintTable.field_names = KANO_Report.columns.tolist()
|
||
|
||
for Index in KANO_Report.index.tolist():
|
||
|
||
PrintTable.add_row(KANO_Report.loc[Index])
|
||
|
||
PrintTable.align["Requirement_Label"] = "l"
|
||
|
||
PrintTable.align["Requirement_Type"] = "r"
|
||
|
||
PrintTable.align["Better_Score"] = "r"
|
||
|
||
PrintTable.align["Worse_Score"] = "r"
|
||
|
||
PrintTable.float_format["Better_Score"] = ".2"
|
||
|
||
PrintTable.float_format["Worse_Score"] = ".2"
|
||
|
||
print("附表 各需求的KANO评价维度计算结果:")
|
||
|
||
print(
|
||
PrintTable.get_string(
|
||
fields=["Requirement_Label", "Requirement_Type", "Better_Score", "Worse_Score"]
|
||
)
|
||
)
|
||
|
||
print("字段说明:")
|
||
|
||
print("1)Requirement_Label为需求名称,Requirement_Type为需求类型。")
|
||
|
||
print(
|
||
"2)A为兴奋型需求:表示产品具有该种需求,则用户满意度会提高;没有该种需求,则用户满意度不会降低。建议给予P3关注。"
|
||
)
|
||
|
||
print(
|
||
"3)O为期望型需求:表示产品具有该种需求,则用户满意度会提高;没有该种需求,则用户满意度会降低。建议给予P1关注。"
|
||
)
|
||
|
||
print(
|
||
"4)M为必备型需求:表示产品具有该种需求,则用户满意度不会提高;没有该种需求,则用户满意度会降低。建议给予P2关注。"
|
||
)
|
||
|
||
print(
|
||
"5)I为无差型需求:表示产品具有该种需求,则用户满意度不会提高;没有该种需求,则用户满意度不会降低。建议给予P4关注。"
|
||
)
|
||
|
||
print("6)R为反向型需求:建议给予关注。")
|
||
|
||
print("7)Q为可疑型需求:建议给予关注。")
|
||
|
||
print(
|
||
"8)Better_Score为Better分数。表示如果产品具有某种需求,则用户满意度会提高,数值越大提高越大。"
|
||
)
|
||
|
||
print(
|
||
"9)Worse_Score为Worse分数。表示如果产品没有某种需求,则用户满意度会下降,数值越小下降越大。"
|
||
)
|
||
|
||
print("")
|