This commit is contained in:
parent
f14a5ee133
commit
68f11f911f
389
神经网络/main.py
389
神经网络/main.py
|
|
@ -4,7 +4,7 @@
|
|||
"""
|
||||
|
||||
# 导入模块
|
||||
from typing import List, Literal
|
||||
from typing import List, Literal, Optional, Dict
|
||||
import numpy
|
||||
|
||||
|
||||
|
|
@ -21,6 +21,7 @@ class NeuralNetwork:
|
|||
structure: List[int],
|
||||
hidden_activate: Literal["relu"] = "relu",
|
||||
output_activate: Literal["linear", "softmax"] = "linear",
|
||||
momentum: float = 0.9,
|
||||
epsilon: float = 1e-9,
|
||||
):
|
||||
"""
|
||||
|
|
@ -28,34 +29,41 @@ class NeuralNetwork:
|
|||
:param structure: 神经网络结构,例如[2, 10, 1]表示2层神经网络,具体为输入层2个神经元、隐含层10个神经元、输出层1个神经元
|
||||
:param hidden_activate: 隐含层的激活函数,默认为relu
|
||||
:param output_activate: 输出层的激活函数,默认为linear
|
||||
:param momentum: 动量因子,默认为0.9
|
||||
:param epsilon: 极小值,默认为1e-9
|
||||
"""
|
||||
print("正在初始化神经网络...", end="")
|
||||
|
||||
if not (
|
||||
all(x >= 1 if isinstance(x, int) else False for x in structure)
|
||||
if isinstance(structure, list) and len(structure) >= 3
|
||||
else False
|
||||
):
|
||||
raise RuntimeError(
|
||||
"神经网络结构应为长度大于等于3的列表且列表元素应为大于等于1的整数"
|
||||
)
|
||||
# 初始化神经网络结构
|
||||
self.structure = structure
|
||||
# 神经网络层数
|
||||
self.layer_counts = (
|
||||
len(structure) - 1
|
||||
) # 定义第0层为输入层,第L层为输出层(L为神经网络层数),第l层为隐含层(l=1,2,...,L-1)
|
||||
|
||||
if hidden_activate not in self.HIDDEN_ACTIVATES:
|
||||
raise ValueError(f"该隐含层激活函数 {hidden_activate} 暂不支持")
|
||||
raise RuntimeError(f"该隐含层激活函数 {hidden_activate} 暂不支持")
|
||||
self.hidden_activate = hidden_activate
|
||||
|
||||
if output_activate not in self.OUTPUT_ACTIVATES:
|
||||
raise ValueError(f"该输出层激活函数 {output_activate} 暂不支持")
|
||||
raise RuntimeError(f"该输出层激活函数 {output_activate} 暂不支持")
|
||||
self.output_activate = output_activate
|
||||
|
||||
self.paramters = {}
|
||||
# 就隐含层和输出层初始化神经网络参数
|
||||
# 神经网络层数(定义第0层为输入层,第L层为输出层(L为神经网络层数),第l层为隐含层(l=1,2,...,L-1),深度为L+1)
|
||||
self.layer_counts = len(structure) - 1
|
||||
|
||||
self.parameters = {}
|
||||
# 初始化神经网络参数
|
||||
for layer_index in range(1, self.layer_counts + 1):
|
||||
# 上一层和当前层神经元数量
|
||||
previous_layer_neuron_counts, current_layer_neuron_counts = (
|
||||
self.structure[layer_index - 1],
|
||||
self.structure[layer_index],
|
||||
)
|
||||
self.paramters[layer_index] = {
|
||||
self.parameters[layer_index] = {
|
||||
"weight": numpy.random.randn(
|
||||
current_layer_neuron_counts, previous_layer_neuron_counts
|
||||
)
|
||||
|
|
@ -73,14 +81,20 @@ class NeuralNetwork:
|
|||
)
|
||||
)
|
||||
)
|
||||
), # 权重,权重维度为[当前层神经元数量,上一层神经元数量]、输入维度为[上一层神经元数量,样本数]以适配加权输=权重*输入+偏移。隐含层使用He初始化权重方法、输出层激活函数若为linear则使用标准Xavier初始化权重方法否则使用改进Xavier初始化权重方法
|
||||
"bias": numpy.zeros((current_layer_neuron_counts, 1)), # 偏移
|
||||
), # 权重,维度为[当前层神经元数量,上一层神经元数量],适配加权输入=权重*输入+平移。隐含层使用He初始化权重方法、输出层激活函数若为linear则使用标准Xavier初始化权重方法否则使用改进Xavier初始化权重方法
|
||||
"bias": numpy.zeros((current_layer_neuron_counts, 1)), # 平移
|
||||
"moving_average": numpy.zeros(
|
||||
(current_layer_neuron_counts, 1)
|
||||
), # 批归一化的移动平均值
|
||||
"moving_variance": numpy.ones(
|
||||
(current_layer_neuron_counts, 1)
|
||||
), # 批归一化的移动方差
|
||||
"gamma": numpy.ones(
|
||||
(current_layer_neuron_counts, 1)
|
||||
), # 批标准化的缩放因子
|
||||
), # 批归一化的缩放因子
|
||||
"beta": numpy.zeros(
|
||||
(current_layer_neuron_counts, 1)
|
||||
), # 批标准化的偏移因子
|
||||
), # 批归一化的平移因子
|
||||
"activate": (
|
||||
self.hidden_activate
|
||||
if layer_index < self.layer_counts
|
||||
|
|
@ -88,10 +102,92 @@ class NeuralNetwork:
|
|||
), # 激活函数
|
||||
}
|
||||
|
||||
self.momentum = momentum
|
||||
# 初始化是否训练模式
|
||||
self.training = None
|
||||
|
||||
self.epsilon = epsilon
|
||||
|
||||
print("已完成")
|
||||
|
||||
def train(
|
||||
self,
|
||||
X: numpy.ndarray,
|
||||
y_true: numpy.ndarray,
|
||||
target_loss: float = 1e-3,
|
||||
epochs: int = 200,
|
||||
learning_rate: float = 0.001,
|
||||
) -> None:
|
||||
"""
|
||||
训练神经网络
|
||||
:param X: 输入层的输入,维度为[输入特征数, 样本数]
|
||||
:param y_true: 输出层的输出真实,维度为[输出特征数, 样本数]
|
||||
:param target_loss: 目标损失
|
||||
:param epochs: 学习轮数
|
||||
:param learning_rate: 学习率
|
||||
:return: 无
|
||||
"""
|
||||
print(
|
||||
f"开始训练:目标损失为 {target_loss},学习轮数为 {epochs},学习率为 {learning_rate}..."
|
||||
)
|
||||
if not (
|
||||
X.shape[1] == y_true.shape[1]
|
||||
and X.shape[0] == self.structure[0]
|
||||
and y_true.shape[0] == self.structure[-1]
|
||||
if isinstance(X, numpy.ndarray) and isinstance(y_true, numpy.ndarray)
|
||||
else False
|
||||
):
|
||||
raise RuntimeError(
|
||||
f"输入层的输入和输出层的输出应为数组,其中输入层的输入维度应为[输入特征数, 样本数],输出层的输出维度应为[输出特征数, 样本数]。样本数应相同,输入特征数应为 {self.structure[0]},输出特征数应为 {self.structure[-1]}"
|
||||
)
|
||||
# 开启训练模式
|
||||
self.training = True
|
||||
# 归一化输入层的输入
|
||||
X = self._normalize(input=X)
|
||||
|
||||
epoch = 0
|
||||
while True:
|
||||
# 前向传播
|
||||
y_predict = self._forward_propagate(X=X)
|
||||
# 计算损失
|
||||
loss = self._calculate_loss(y_true=y_true, y_predict=y_predict)
|
||||
if loss <= target_loss:
|
||||
print(
|
||||
f"第 {epoch:6d} 轮损失已达到目标损失 {target_loss:9.3f},训练结束"
|
||||
)
|
||||
break
|
||||
if epoch > epochs:
|
||||
print(f"已达到最大学习轮数,损失为 {loss:9.3f},训练结束")
|
||||
break
|
||||
|
||||
# 后向传播
|
||||
self._backward_propagate(X=X, y_true=y_true, y_predict=y_predict)
|
||||
# 更新神经网络参数
|
||||
self._update_parameters(learning_rate=learning_rate)
|
||||
|
||||
if epoch % 100 == 0:
|
||||
print(f"第 {epoch:6d} 轮损失为 {loss:9.3f},继续训练...")
|
||||
epoch += 1
|
||||
|
||||
for idx in numpy.random.choice(X.shape[1], size=10, replace=False):
|
||||
y_true_val = y_true[0, idx]
|
||||
y_pred_val = y_predict[0, idx]
|
||||
error = abs(y_true_val - y_pred_val)
|
||||
print(f"{idx:<10} {y_true_val:<15.4f} {y_pred_val:<15.4f} {error:<15.4f}")
|
||||
|
||||
def _normalize(
|
||||
self,
|
||||
input: numpy.ndarray,
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
归一化
|
||||
:param input: 输入
|
||||
:return: 归一化后的输入,维度与输入相同
|
||||
"""
|
||||
return (input - numpy.mean(input, axis=1, keepdims=True)) / numpy.sqrt(
|
||||
numpy.var(input, ddof=0, axis=1, keepdims=True) + self.epsilon
|
||||
)
|
||||
|
||||
def _forward_propagate(self, X: numpy.ndarray) -> numpy.ndarray:
|
||||
"""
|
||||
前向传播
|
||||
|
|
@ -100,37 +196,32 @@ class NeuralNetwork:
|
|||
"""
|
||||
activation = X # 将输入层的输入作为第0层的输出
|
||||
for layer_index in range(1, self.layer_counts + 1):
|
||||
x = activation # 将上一层的输出作为当前层的输入
|
||||
self.paramters[layer_index].update(
|
||||
self.parameters[layer_index].update(
|
||||
{
|
||||
"x": (x := activation), # 将上一层的输出作为当前层的输入
|
||||
"weighted_input": (
|
||||
weighted_input := numpy.dot(
|
||||
self.paramters[layer_index]["weight"], x
|
||||
self.parameters[layer_index]["weight"], x
|
||||
)
|
||||
), # 加权输入
|
||||
"weighted_input_average": (
|
||||
weighted_input_average := numpy.mean(
|
||||
weighted_input, axis=1, keepdims=True
|
||||
+ self.parameters[layer_index]["bias"]
|
||||
), # 加权输入,维度为[当前层神经元数量,样本数]
|
||||
**(
|
||||
output := self._batch_normalize(
|
||||
input=weighted_input,
|
||||
moving_average=self.parameters[layer_index][
|
||||
"moving_average"
|
||||
],
|
||||
moving_variance=self.parameters[layer_index][
|
||||
"moving_variance"
|
||||
],
|
||||
gamma=self.parameters[layer_index]["gamma"],
|
||||
beta=self.parameters[layer_index]["beta"],
|
||||
)
|
||||
), # 加权输入的平均值
|
||||
"weighted_input_standard_deviation": (
|
||||
weighted_input_standard_deviation := numpy.sqrt(
|
||||
numpy.var(weighted_input, ddof=0, axis=1, keepdims=True)
|
||||
+ self.epsilon
|
||||
)
|
||||
), # 加权输入的标准差
|
||||
"batch_normalized_weighted_input": (
|
||||
batch_normalized_weighted_input := (
|
||||
weighted_input - weighted_input_average
|
||||
)
|
||||
* self.paramters[layer_index]["gamma"]
|
||||
/ weighted_input_standard_deviation
|
||||
+ self.paramters[layer_index]["beta"]
|
||||
), # 就加权输入批标准化
|
||||
), # 加权输入的批归一化
|
||||
"activation": (
|
||||
activation := self._activate(
|
||||
activate=self.paramters[layer_index]["activate"],
|
||||
weighted_input=batch_normalized_weighted_input,
|
||||
activate=self.parameters[layer_index]["activate"],
|
||||
input=output["normalization"],
|
||||
)
|
||||
), # 输出
|
||||
}
|
||||
|
|
@ -139,27 +230,77 @@ class NeuralNetwork:
|
|||
y_predict = activation # 将第L层(输出层)的输出作为输出层的输出预测
|
||||
return y_predict
|
||||
|
||||
def _batch_normalize(
|
||||
self,
|
||||
input: numpy.ndarray,
|
||||
moving_average: numpy.ndarray,
|
||||
moving_variance: numpy.ndarray,
|
||||
gamma: numpy.ndarray,
|
||||
beta: numpy.ndarray,
|
||||
) -> Dict[str, numpy.ndarray]:
|
||||
"""
|
||||
批归一化
|
||||
:param input: 输入
|
||||
:param moving_average: 批归一化的移动平均值,维度为[输入维度的行, 1]
|
||||
:param moving_variance: 批归一化的移动方差,维度为[输入维度的行, 1]
|
||||
:param gamma: 批归一化的缩放因子,维度为[输入维度的行, 1]
|
||||
:param beta: 批归一化的平移因子,维度为[输入维度的行, 1]
|
||||
:return: 批归一化后的输入,维度与输入相同
|
||||
"""
|
||||
return {
|
||||
"average": (
|
||||
average := (
|
||||
numpy.mean(input, axis=1, keepdims=True)
|
||||
if self.training
|
||||
else moving_average
|
||||
)
|
||||
), # 就各行所有列求平均值,维度为[输入维度的行, 1]
|
||||
"variance": (
|
||||
variance := (
|
||||
numpy.var(input, ddof=0, axis=1, keepdims=True)
|
||||
if self.training
|
||||
else moving_variance
|
||||
)
|
||||
), # 就各行所有列求方差,维度为[输入维度的行, 1]
|
||||
"moving_average": (
|
||||
self.momentum * moving_average + (1 - self.momentum) * average
|
||||
if self.training
|
||||
else moving_average
|
||||
), # 更新批归一化的移动平均值
|
||||
"moving_variance": (
|
||||
self.momentum * moving_variance + (1 - self.momentum) * variance
|
||||
if self.training
|
||||
else moving_variance
|
||||
), # 更新批归一化的移动方差
|
||||
"standard_deviation": (
|
||||
standard_deviation := numpy.sqrt(variance + self.epsilon)
|
||||
), # 就各行所有列求标准差,维度为[输入维度的行, 1]
|
||||
"normalization": (
|
||||
(input - average) / standard_deviation * gamma + beta
|
||||
), # 归一化后的输入,维度与输入相同
|
||||
}
|
||||
|
||||
def _activate(
|
||||
self,
|
||||
activate: Literal["relu", "linear", "softmax"],
|
||||
weighted_input: numpy.ndarray,
|
||||
input: numpy.ndarray,
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
根据激活函数计算输出
|
||||
根据激活函数计算输入
|
||||
:param activate: 激活函数
|
||||
:param weighted_input: 加权输入
|
||||
:return: 输出
|
||||
:param input: 输入,维度为[当前层神经元数量,样本数]
|
||||
:return: 经过激活函数计算后的输入,维度为[当前层神经元数量,样本数]
|
||||
"""
|
||||
match activate:
|
||||
case "relu":
|
||||
return numpy.maximum(0, weighted_input)
|
||||
return numpy.maximum(0, input)
|
||||
case "linear":
|
||||
return weighted_input
|
||||
return input
|
||||
case "softmax":
|
||||
# 加权输入的指数项
|
||||
e_weighted_input = numpy.exp(
|
||||
weighted_input - numpy.max(weighted_input, axis=0, keepdims=True)
|
||||
)
|
||||
input - numpy.max(input, axis=0, keepdims=True)
|
||||
) # 减去各样本所有神经元最大值以避免指数溢出
|
||||
return e_weighted_input / numpy.sum(
|
||||
e_weighted_input, axis=0, keepdims=True
|
||||
)
|
||||
|
|
@ -177,7 +318,7 @@ class NeuralNetwork:
|
|||
"""
|
||||
return (
|
||||
0.5 * numpy.mean(numpy.square(y_true - y_predict))
|
||||
if self.paramters[self.layer_counts]["activate"] == "linear"
|
||||
if self.parameters[self.layer_counts]["activate"] == "linear"
|
||||
else -1
|
||||
* numpy.mean(
|
||||
numpy.sum(
|
||||
|
|
@ -203,74 +344,64 @@ class NeuralNetwork:
|
|||
"""
|
||||
sample_counts = X.shape[1] # 样本数
|
||||
|
||||
# 损失函数对输出层的就加权输入批标准化的梯度
|
||||
self.paramters[self.layer_counts]["delta_batch_normalized_weighted_input"] = (
|
||||
# 损失函数对输出层的就加权输入批归一化的梯度
|
||||
self.parameters[self.layer_counts]["delta_normalization"] = (
|
||||
y_predict - y_true
|
||||
) / sample_counts # 均方误差和交叉熵对输出层的输出预测的梯度是相同的
|
||||
|
||||
for layer_index in range(self.layer_counts, 0, -1):
|
||||
self.paramters[layer_index].update(
|
||||
self.parameters[layer_index].update(
|
||||
{
|
||||
"delta_gamma": numpy.sum(
|
||||
self.paramters[layer_index][
|
||||
"delta_batch_normalized_weighted_input"
|
||||
]
|
||||
self.parameters[layer_index]["delta_normalization"]
|
||||
* (
|
||||
self.paramters[layer_index]["weighted_input"]
|
||||
- self.paramters[layer_index]["weighted_input_average"]
|
||||
self.parameters[layer_index]["weighted_input"]
|
||||
- self.parameters[layer_index]["weighted_input_average"]
|
||||
)
|
||||
/ self.paramters[layer_index][
|
||||
/ self.parameters[layer_index][
|
||||
"weighted_input_standard_deviation"
|
||||
],
|
||||
axis=1,
|
||||
keepdims=True,
|
||||
), # 批标准化的缩放因子的梯度
|
||||
), # 批归一化的缩放因子的梯度
|
||||
"delta_beta": numpy.sum(
|
||||
self.paramters[layer_index][
|
||||
"delta_batch_normalized_weighted_input"
|
||||
],
|
||||
self.parameters[layer_index]["delta_normalization"],
|
||||
axis=1,
|
||||
keepdims=True,
|
||||
), # 批标准化的偏移因子的梯度
|
||||
), # 批归一化的平移因子的梯度
|
||||
"delta_weighted_input": (
|
||||
delta_weighted_input := (
|
||||
sample_counts
|
||||
* self.paramters[layer_index]["gamma"]
|
||||
* self.paramters[layer_index][
|
||||
"delta_batch_normalized_weighted_input"
|
||||
]
|
||||
* self.parameters[layer_index]["gamma"]
|
||||
* self.parameters[layer_index]["delta_normalization"]
|
||||
- numpy.sum(
|
||||
self.paramters[layer_index]["gamma"]
|
||||
* self.paramters[layer_index][
|
||||
"delta_batch_normalized_weighted_input"
|
||||
],
|
||||
self.parameters[layer_index]["gamma"]
|
||||
* self.parameters[layer_index]["delta_normalization"],
|
||||
axis=1,
|
||||
keepdims=True,
|
||||
)
|
||||
- (
|
||||
(
|
||||
self.paramters[layer_index]["weighted_input"]
|
||||
- self.paramters[layer_index][
|
||||
self.parameters[layer_index]["weighted_input"]
|
||||
- self.parameters[layer_index][
|
||||
"weighted_input_average"
|
||||
]
|
||||
)
|
||||
/ self.paramters[layer_index][
|
||||
/ self.parameters[layer_index][
|
||||
"weighted_input_standard_deviation"
|
||||
]
|
||||
)
|
||||
* numpy.sum(
|
||||
self.paramters[layer_index]["gamma"]
|
||||
* self.paramters[layer_index][
|
||||
"delta_batch_normalized_weighted_input"
|
||||
]
|
||||
self.parameters[layer_index]["gamma"]
|
||||
* self.parameters[layer_index]["delta_normalization"]
|
||||
* (
|
||||
(
|
||||
self.paramters[layer_index]["weighted_input"]
|
||||
- self.paramters[layer_index][
|
||||
self.parameters[layer_index]["weighted_input"]
|
||||
- self.parameters[layer_index][
|
||||
"weighted_input_average"
|
||||
]
|
||||
)
|
||||
/ self.paramters[layer_index][
|
||||
/ self.parameters[layer_index][
|
||||
"weighted_input_standard_deviation"
|
||||
]
|
||||
),
|
||||
|
|
@ -279,7 +410,7 @@ class NeuralNetwork:
|
|||
)
|
||||
)
|
||||
* (1.0 / sample_counts)
|
||||
/ self.paramters[layer_index][
|
||||
/ self.parameters[layer_index][
|
||||
"weighted_input_standard_deviation"
|
||||
]
|
||||
), # 加权输入的梯度
|
||||
|
|
@ -288,7 +419,7 @@ class NeuralNetwork:
|
|||
(
|
||||
X
|
||||
if layer_index == 1
|
||||
else self.paramters[layer_index - 1]["activation"]
|
||||
else self.parameters[layer_index - 1]["activation"]
|
||||
).T,
|
||||
), # 权重的梯度
|
||||
"delta_bias": numpy.sum(
|
||||
|
|
@ -300,75 +431,13 @@ class NeuralNetwork:
|
|||
)
|
||||
|
||||
if layer_index > 1:
|
||||
self.paramters[layer_index - 1][
|
||||
"delta_batch_normalized_weighted_input"
|
||||
] = numpy.dot(
|
||||
self.paramters[layer_index]["weight"].T,
|
||||
self.paramters[layer_index]["delta_weighted_input"],
|
||||
) * (
|
||||
self.paramters[layer_index - 1]["batch_normalized_weighted_input"]
|
||||
> 0
|
||||
).astype(
|
||||
self.parameters[layer_index - 1]["delta_normalization"] = numpy.dot(
|
||||
self.parameters[layer_index]["weight"].T,
|
||||
self.parameters[layer_index]["delta_weighted_input"],
|
||||
) * (self.parameters[layer_index - 1]["normalization"] > 0).astype(
|
||||
numpy.float32
|
||||
)
|
||||
|
||||
def train(
|
||||
self,
|
||||
X: numpy.ndarray,
|
||||
y_true: numpy.ndarray,
|
||||
target_loss: float = 1e-3,
|
||||
epochs: int = 200,
|
||||
learning_rate: float = 0.001,
|
||||
) -> None:
|
||||
"""
|
||||
训练神经网络
|
||||
:param X: 输入层的输入
|
||||
:param y_true: 输出层的输出真实
|
||||
:param target_loss: 目标损失
|
||||
:param epochs: 学习轮数
|
||||
:param learning_rate: 学习率
|
||||
:return: 无
|
||||
"""
|
||||
print(
|
||||
f"开始训练:目标损失为 {target_loss},学习轮数为 {epochs},学习率为 {learning_rate}..."
|
||||
)
|
||||
# 标准化
|
||||
X = (X - numpy.mean(X, axis=1, keepdims=True)) / (
|
||||
numpy.std(X, axis=1, keepdims=True) + self.epsilon
|
||||
)
|
||||
epoch = 1
|
||||
while True:
|
||||
# 前向传播
|
||||
y_predict = self._forward_propagate(X=X)
|
||||
|
||||
loss = self._calculate_loss(y_true=y_true, y_predict=y_predict)
|
||||
if loss < target_loss:
|
||||
print(
|
||||
f" 第 {epoch} 轮损失为 {loss},已达到目标损失 {target_loss},训练结束"
|
||||
)
|
||||
break
|
||||
if epoch >= epochs:
|
||||
print(
|
||||
f" 第 {epoch} 轮损失为 {loss},已达到最大学习轮数 {epochs},训练结束"
|
||||
)
|
||||
break
|
||||
if epoch % 50 == 0:
|
||||
print(f" 第 {epoch} 轮损失为 {loss},继续训练...")
|
||||
|
||||
# 后向传播
|
||||
self._backward_propagate(X=X, y_true=y_true, y_predict=y_predict)
|
||||
|
||||
# 更新神经网络参数
|
||||
self._update_parameters(learning_rate=learning_rate)
|
||||
|
||||
epoch += 1
|
||||
|
||||
for idx in numpy.random.choice(X.shape[1], size=10, replace=False):
|
||||
y_true_val = y_true[0, idx]
|
||||
y_pred_val = y_predict[0, idx]
|
||||
error = abs(y_true_val - y_pred_val)
|
||||
print(f"{idx:<10} {y_true_val:<15.4f} {y_pred_val:<15.4f} {error:<15.4f}")
|
||||
|
||||
def _update_parameters(self, learning_rate: float) -> None:
|
||||
"""
|
||||
更新神经网络参数
|
||||
|
|
@ -376,16 +445,20 @@ class NeuralNetwork:
|
|||
:return: 无
|
||||
"""
|
||||
for layer_index in range(1, self.layer_counts + 1):
|
||||
self.paramters[layer_index].update(
|
||||
self.parameters[layer_index].update(
|
||||
{
|
||||
"weight": self.paramters[layer_index]["weight"]
|
||||
- self.paramters[layer_index]["delta_weight"] * learning_rate,
|
||||
"bias": self.paramters[layer_index]["bias"]
|
||||
- self.paramters[layer_index]["delta_bias"] * learning_rate,
|
||||
"gamma": self.paramters[layer_index]["gamma"]
|
||||
- self.paramters[layer_index]["delta_gamma"] * learning_rate,
|
||||
"beta": self.paramters[layer_index]["beta"]
|
||||
- self.paramters[layer_index]["delta_beta"] * learning_rate,
|
||||
"weight": self.parameters[layer_index]["weight"]
|
||||
- self.parameters[layer_index]["delta_weight"]
|
||||
* learning_rate, # 权重
|
||||
"bias": self.parameters[layer_index]["bias"]
|
||||
- self.parameters[layer_index]["delta_bias"]
|
||||
* learning_rate, # 平移
|
||||
"gamma": self.parameters[layer_index]["gamma"]
|
||||
- self.parameters[layer_index]["delta_gamma"]
|
||||
* learning_rate, # 批归一化的缩放因子
|
||||
"beta": self.parameters[layer_index]["beta"]
|
||||
- self.parameters[layer_index]["delta_beta"]
|
||||
* learning_rate, # 批归一化的平移因子
|
||||
}
|
||||
)
|
||||
|
||||
|
|
@ -396,7 +469,7 @@ if __name__ == "__main__":
|
|||
numpy.random.seed(42) # 设置随机种子保证可复现
|
||||
X = numpy.random.randn(2, 100) * 5
|
||||
# 真实函数:y = 2*x1 + 3*x2 + 1 (加噪声)
|
||||
y_true = 2 * X[0:1, :]**2 + 3 * X[1:2, :] + 1 + numpy.random.randn(1, 100) * 0.1
|
||||
y_true = 2 * X[0:1, :] ** 2 + 3 * X[1:2, :] + 1 + numpy.random.randn(1, 100) * 0.1
|
||||
|
||||
# 创建并训练神经网络
|
||||
neural_network = NeuralNetwork(
|
||||
|
|
|
|||
Loading…
Reference in New Issue