251029更新

This commit is contained in:
marslbr 2025-10-30 18:53:03 +08:00
parent c46f53e2f9
commit 190083cfd0
1 changed files with 10 additions and 15 deletions

View File

@ -29,7 +29,7 @@ class InitializationArguments(BaseModel):
# 时间窗口(单位为天),平衡实时性和运算效率
time_window: int = Field(default=30, ge=5, le=360)
# 衰减因子兰布达系数,控制兴趣分数衰减速率
# 衰减因子兰布达系数,控制兴趣分数衰减速率(默认不衰减)
decay_lambda: float = Field(default=0, ge=0.00, le=10)
# 用户特征向量维度数
attributes_dimensions: int = Field(default=10, ge=2.00, le=200)
@ -210,9 +210,9 @@ class RecommenderSystem:
# 根据行为类型获取兴趣基础分数和衰减权重
score_base, weight = self.behavior_arguments[type_]
# 若行为类型为评分则将基础分数转化为0.20.8
# 若行为类型为评分则将评分转为基础分数(基于最小值-最大值归一化为0.21.0
if type_ == "rating":
score_base = 0.1 + 0.8 * (1 / (1 + numpy.exp(3 - rating)))
score_base = 0.2 * (rating - 1) + 0.2
return score_base * numpy.exp(0 - time_interval * (self.decay_lambda * weight))
@ -259,8 +259,6 @@ class RecommenderSystem:
# 基于物品的协同过滤生成推荐物品标识列表
candidates_items = self._generate_items_candidates(user=user, k=k)
print(candidates_items)
# 基于用户的协同过滤生成推荐物品标识列表
candidates_users = self._generate_users_candidates(user=user, k=k)
@ -327,18 +325,17 @@ class RecommenderSystem:
else 0
)
# 流行度抑制因子
popularity_suppressed = len(
list(set(users_heuristic) & set(users_recall))
) / numpy.sqrt(len(users_heuristic) * len(users_recall))
print(pair, similarity)
# 加权物品的相似度
items_recall[item_recall]["scores"] += (
behaviors["scores"][item_heuristic]
* similarity
* popularity_suppressed
behaviors["scores"][item_heuristic] * similarity
)
print(items_recall)
exit()
return self._normalize_scores(items_recall=items_recall, k=k)
# 基于用户协同过滤算法生成候选物品标识列表
@ -385,8 +382,6 @@ class RecommenderSystem:
# 候选物品标识列表
candidates = defaultdict(float)
print(items_recall)
if items_recall:
scores = [value["scores"] for value in items_recall.values()]
@ -428,7 +423,7 @@ if __name__ == "__main__":
"user": "aaaaaa",
"item": "111111",
"type_": "rating",
"timestamp": int(time.time() - 3600),
"timestamp": int(time.time() - 3200),
"rating": 4,
},
{