251111更新
This commit is contained in:
parent
2fedbac2a5
commit
16a0b4e7c5
557
KANO/main.py
557
KANO/main.py
|
|
@ -5,9 +5,12 @@
|
|||
本脚本用于KANO需求分析,能够处理问卷数据并输出需求分类结果
|
||||
"""
|
||||
|
||||
import re
|
||||
|
||||
import numpy
|
||||
import pandas
|
||||
|
||||
import prettytable
|
||||
from utils.pandas_extension import save_as_workbook
|
||||
|
||||
|
||||
print("1 打开并读取Excel文件...", end="")
|
||||
|
|
@ -37,9 +40,9 @@ try:
|
|||
raise Exception("样本数为0")
|
||||
|
||||
# 统计列数
|
||||
columns_counts = dataset.shape[1]
|
||||
columns = dataset.shape[1]
|
||||
# 若列数非奇数则抛出异常
|
||||
if columns_counts % 2 != 0:
|
||||
if columns % 2 != 0:
|
||||
raise Exception("列数为奇数")
|
||||
|
||||
print(f"已完成,样本数为{samples_size}")
|
||||
|
|
@ -48,451 +51,133 @@ except Exception as exception:
|
|||
print(f"发生异常:{str(exception)}")
|
||||
exit()
|
||||
|
||||
# 读取问卷题目和答案(从第7列开始为题目或答案)
|
||||
DataSet = DataSet.iloc[:, 6:]
|
||||
print("2 生成KANO评价结果...", end="")
|
||||
|
||||
# 统计数据集中样本数量和题目数量
|
||||
Sample_Size, Question_Amount = DataSet.shape
|
||||
# KANO评价结果
|
||||
kano = pandas.DataFrame()
|
||||
|
||||
# 判断题目数量是否为偶数,若为偶数则计算问卷中涉及需求数量,若为奇数则终止脚本
|
||||
if Question_Amount % 2 == 0:
|
||||
for column in range(columns):
|
||||
if column % 2 != 0:
|
||||
continue
|
||||
|
||||
# 计算问卷中涉及需求数量
|
||||
Requirement_Amount = int(Question_Amount / 2)
|
||||
# 功能名称
|
||||
feature = re.search(
|
||||
pattern="【(?P<feature>.*?)】", string=dataset.columns[column]
|
||||
).group("feature")
|
||||
|
||||
else:
|
||||
# 生成某功能的选项分布
|
||||
distribution = pandas.crosstab(
|
||||
index=dataset.iloc[:, column], # 行索引为如果该产品有{{功能名称}}的选项
|
||||
columns=dataset.iloc[:, column + 1], # 列索引为如果该产品没有{{功能名称}}的选项
|
||||
rownames=[""],
|
||||
colnames=[""],
|
||||
normalize=True, # 转为占比
|
||||
).reindex(index=alternatives, columns=alternatives, fill_value=0)
|
||||
|
||||
print("题目数量为奇数,请检查")
|
||||
print("")
|
||||
|
||||
exit()
|
||||
|
||||
print(
|
||||
"数据集中包含 %d 份样本, %d 个问题(涉及 %d 个需求)"
|
||||
% (Sample_Size, Question_Amount, Requirement_Amount)
|
||||
)
|
||||
print("")
|
||||
|
||||
print("*" * 100)
|
||||
print("")
|
||||
|
||||
print("2 数据预处理")
|
||||
print("")
|
||||
|
||||
print("2.1 检查并删除不规范样本")
|
||||
print("")
|
||||
|
||||
# 定义问卷中备选答案列表
|
||||
Alternatives = ["我很喜欢", "理所应当", "无所谓", "勉强接受", "我很不喜欢"]
|
||||
|
||||
# 检查答案是否在指定范围,若否则将该答案定义为空值
|
||||
DataSet = DataSet.applymap(lambda x: x if x in Alternatives else None)
|
||||
|
||||
# 删除包含缺失值的样本
|
||||
DataSet.dropna(axis="index", how="any", inplace=True)
|
||||
|
||||
# 删除答案全部相同的样本
|
||||
DataSet = DataSet[DataSet.apply(pandas.Series.nunique, axis="columns") != 1]
|
||||
|
||||
# 统计有效样本数量
|
||||
Sample_Size = DataSet.shape[0]
|
||||
|
||||
print("处理后,有效样本数量为 %d 份" % (Sample_Size))
|
||||
print("")
|
||||
|
||||
print("*" * 100)
|
||||
print("")
|
||||
|
||||
print("3 数据处理")
|
||||
print("")
|
||||
|
||||
Requirement_Labels = DataSet.columns.tolist()
|
||||
|
||||
# 通过问题截取需求名称(截取'有'右侧、','左侧字符串)
|
||||
Requirement_Labels = [
|
||||
x[x.find("有") + 1 : x.find(",")]
|
||||
for x in Requirement_Labels
|
||||
if isinstance(x, str) and "具有" in x
|
||||
]
|
||||
|
||||
print("3.1 绘制KANO评价结果分类对照表")
|
||||
print("")
|
||||
|
||||
for Question_Number in range(Requirement_Amount):
|
||||
|
||||
# 创建KANO评价结果分类对照表
|
||||
KANO = pandas.DataFrame(data=[], index=Alternatives, columns=Alternatives)
|
||||
|
||||
for Column_Label in Alternatives:
|
||||
|
||||
for Index_Label in Alternatives:
|
||||
|
||||
# 统计并赋值
|
||||
KANO.loc[Index_Label, Column_Label] = DataSet.loc[
|
||||
(DataSet.iloc[:, Question_Number].isin([Index_Label]))
|
||||
& (DataSet.iloc[:, Question_Number + 1].isin([Column_Label])),
|
||||
:,
|
||||
].shape[0]
|
||||
|
||||
# 修改行名
|
||||
KANO.index = [
|
||||
"Provide_Like",
|
||||
"Provide_Should",
|
||||
"Provide_Indifferent",
|
||||
"Provide_Grudging",
|
||||
"Provide_Hate",
|
||||
]
|
||||
|
||||
# 重置索引
|
||||
KANO.reset_index(inplace=True)
|
||||
|
||||
# 修改列名
|
||||
KANO.columns = [
|
||||
"",
|
||||
"Not_Provide_Like",
|
||||
"Not_Provide_Should",
|
||||
"Not_Provide_Indifferent",
|
||||
"Not_Provide_Grudging",
|
||||
"Not_Provide_Hate",
|
||||
]
|
||||
|
||||
# 打印表格
|
||||
|
||||
PrintTable = prettytable.PrettyTable()
|
||||
|
||||
PrintTable.field_names = KANO.columns.tolist()
|
||||
|
||||
for Index in KANO.index.tolist():
|
||||
|
||||
PrintTable.add_row(KANO.loc[Index])
|
||||
|
||||
PrintTable.align = "r"
|
||||
|
||||
PrintTable.align[""] = "l"
|
||||
|
||||
PrintTable.float_format = "."
|
||||
|
||||
print(
|
||||
"附表 需求%d:%s的KANO评价结果分类对照表:"
|
||||
% (Question_Number + 1, Requirement_Labels[Question_Number])
|
||||
)
|
||||
|
||||
print(PrintTable)
|
||||
|
||||
print("")
|
||||
|
||||
print("字段说明:")
|
||||
|
||||
print(
|
||||
"1)Not_Provide_Like为不提供该需求、用户表示“我很喜欢”,Not_Provide_Should为不提供该需求、用户表示“理所应当”,Not_Provide_Indifferent为不提供该需求、用户表示“无所谓”,Not_Provide_Grudging为不提供该需求、用户表示“勉强接受”,Not_Provide_Hate为不提供该需求、用户表示“我很不喜欢”。"
|
||||
)
|
||||
|
||||
print(
|
||||
"1)Provide_Like为提供该需求、用户表示“我很喜欢”,Provide_Should为提供该需求、用户表示“理所应当”,Provide_Indifferent为提供该需求、用户表示“无所谓”,Provide_Grudging为提供该需求、用户表示“勉强接受”,Provide_Hate为不提供该需求、用户表示“我很不喜欢”。"
|
||||
)
|
||||
|
||||
print("")
|
||||
|
||||
print("3.2 计算KANO评价维度")
|
||||
print("")
|
||||
|
||||
# 创建KANO各维度分数表
|
||||
KANO_Report = pandas.DataFrame(
|
||||
data=[],
|
||||
columns=[
|
||||
"Requirement_Label",
|
||||
"A_Score",
|
||||
"O_Score",
|
||||
"M_Score",
|
||||
"I_Score",
|
||||
"R_Score",
|
||||
"Q_Score",
|
||||
],
|
||||
dtype="float",
|
||||
)
|
||||
|
||||
KANO_Report["Requirement_Label"] = Requirement_Labels
|
||||
|
||||
for Question_Number in range(Requirement_Amount):
|
||||
|
||||
# 计算兴奋型需求分数
|
||||
A_Score = round(
|
||||
DataSet.loc[
|
||||
(DataSet.iloc[:, Question_Number].isin(["我很喜欢"]))
|
||||
& (
|
||||
DataSet.iloc[:, Question_Number + 1].isin(
|
||||
["理所应当", "无所谓", "勉强接受"]
|
||||
)
|
||||
kano = pandas.concat(
|
||||
objs=[
|
||||
kano,
|
||||
pandas.DataFrame(
|
||||
[
|
||||
{
|
||||
"功能名称": feature,
|
||||
"魅力属性": distribution.loc[
|
||||
"非常满意", ["理应如此", "无所谓", "勉强接受"]
|
||||
].sum(),
|
||||
"期望属性": distribution.loc["非常满意", "不满意"].sum(),
|
||||
"必备属性": distribution.loc[
|
||||
["理应如此", "无所谓", "勉强接受"], "不满意"
|
||||
].sum(),
|
||||
"无差异属性": distribution.loc[
|
||||
["理应如此", "无所谓", "勉强接受"],
|
||||
["理应如此", "无所谓", "勉强接受"],
|
||||
]
|
||||
.sum()
|
||||
.sum(),
|
||||
"反向属性": distribution.loc[
|
||||
["理应如此", "无所谓", "勉强接受", "不满意"], "非常满意"
|
||||
].sum()
|
||||
+ distribution.loc[
|
||||
("不满意", ["理应如此", "无所谓", "勉强接受"])
|
||||
].sum(),
|
||||
"可疑结果": distribution.loc["非常满意", "非常满意"]
|
||||
+ distribution.loc["不满意", "不满意"],
|
||||
}
|
||||
]
|
||||
),
|
||||
:,
|
||||
].shape[0]
|
||||
/ Sample_Size
|
||||
* 100,
|
||||
2,
|
||||
],
|
||||
ignore_index=True,
|
||||
)
|
||||
|
||||
KANO_Report.loc[Question_Number, "A_Score"] = A_Score
|
||||
|
||||
# 计算期望型需求分数
|
||||
O_Score = round(
|
||||
DataSet.loc[
|
||||
(DataSet.iloc[:, Question_Number].isin(["我很喜欢"]))
|
||||
& (DataSet.iloc[:, Question_Number + 1].isin(["我很不喜欢"])),
|
||||
:,
|
||||
].shape[0]
|
||||
/ Sample_Size
|
||||
* 100,
|
||||
2,
|
||||
# 计算better-worse分数,并贴标签
|
||||
kano = (
|
||||
kano.assign(
|
||||
满意系数=lambda dataframe: (dataframe["魅力属性"] + dataframe["期望属性"])
|
||||
/ (
|
||||
dataframe["魅力属性"]
|
||||
+ dataframe["期望属性"]
|
||||
+ dataframe["必备属性"]
|
||||
+ dataframe["无差异属性"]
|
||||
),
|
||||
不满意系数=lambda dataframe: (dataframe["必备属性"] + dataframe["期望属性"])
|
||||
/ (
|
||||
dataframe["魅力属性"]
|
||||
+ dataframe["期望属性"]
|
||||
+ dataframe["必备属性"]
|
||||
+ dataframe["无差异属性"]
|
||||
),
|
||||
)
|
||||
|
||||
KANO_Report.loc[Question_Number, "O_Score"] = O_Score
|
||||
|
||||
# 计算必备型需求分数
|
||||
M_Score = round(
|
||||
DataSet.loc[
|
||||
(DataSet.iloc[:, Question_Number].isin(["理所应当", "无所谓", "勉强接受"]))
|
||||
& (DataSet.iloc[:, Question_Number + 1].isin(["我很不喜欢"])),
|
||||
:,
|
||||
].shape[0]
|
||||
/ Sample_Size
|
||||
* 100,
|
||||
2,
|
||||
)
|
||||
|
||||
KANO_Report.loc[Question_Number, "M_Score"] = M_Score
|
||||
|
||||
# 计算无差型需求分数
|
||||
I_Score = round(
|
||||
DataSet.loc[
|
||||
(DataSet.iloc[:, Question_Number].isin(["理所应当", "无所谓", "勉强接受"]))
|
||||
& (
|
||||
DataSet.iloc[:, Question_Number + 1].isin(
|
||||
["理所应当", "无所谓", "勉强接受"]
|
||||
)
|
||||
.pipe(
|
||||
lambda dataframe: dataframe.assign(
|
||||
需求标签=numpy.select(
|
||||
condlist=[
|
||||
(dataframe["满意系数"] >= dataframe["满意系数"].mean())
|
||||
& (dataframe["不满意系数"] >= dataframe["不满意系数"].mean()),
|
||||
(dataframe["满意系数"] >= dataframe["满意系数"].mean())
|
||||
& (dataframe["不满意系数"] < dataframe["不满意系数"].mean()),
|
||||
(dataframe["满意系数"] < dataframe["满意系数"].mean())
|
||||
& (dataframe["不满意系数"] < dataframe["不满意系数"].mean()),
|
||||
(dataframe["满意系数"] < dataframe["满意系数"].mean())
|
||||
& (dataframe["不满意系数"] >= dataframe["不满意系数"].mean()),
|
||||
],
|
||||
choicelist=[
|
||||
"期望型需求(P2)",
|
||||
"魅力型需求(P3)",
|
||||
"无差异需求(P4)",
|
||||
"必备型需求(P1)",
|
||||
],
|
||||
default="未分类",
|
||||
),
|
||||
:,
|
||||
].shape[0]
|
||||
/ Sample_Size
|
||||
* 100,
|
||||
2,
|
||||
)
|
||||
)
|
||||
|
||||
KANO_Report.loc[Question_Number, "I_Score"] = I_Score
|
||||
|
||||
# 计算反向型需求分数
|
||||
R_Score = round(
|
||||
DataSet.loc[
|
||||
(
|
||||
DataSet.iloc[:, Question_Number].isin(
|
||||
["理所应当", "无所谓", "勉强接受", "我很不喜欢"]
|
||||
)
|
||||
)
|
||||
& (
|
||||
DataSet.iloc[:, Question_Number + 1].isin(
|
||||
["我很喜欢", "理所应当", "无所谓", "勉强接受"]
|
||||
)
|
||||
),
|
||||
:,
|
||||
].shape[0]
|
||||
/ Sample_Size
|
||||
* 100
|
||||
- I_Score,
|
||||
2,
|
||||
)
|
||||
|
||||
KANO_Report.loc[Question_Number, "R_Score"] = R_Score
|
||||
|
||||
# 计算可疑型需求分数
|
||||
Q_Score = round(
|
||||
DataSet.loc[
|
||||
(DataSet.iloc[:, Question_Number].isin(["我很喜欢"]))
|
||||
& (DataSet.iloc[:, Question_Number + 1].isin(["我很喜欢"])),
|
||||
:,
|
||||
].shape[0]
|
||||
/ Sample_Size
|
||||
* 100
|
||||
+ DataSet.loc[
|
||||
(DataSet.iloc[:, Question_Number].isin(["我很不喜欢"]))
|
||||
& (DataSet.iloc[:, Question_Number + 1].isin(["我很不喜欢"])),
|
||||
:,
|
||||
].shape[0]
|
||||
/ Sample_Size
|
||||
* 100,
|
||||
2,
|
||||
)
|
||||
|
||||
KANO_Report.loc[Question_Number, "Q_Score"] = Q_Score
|
||||
|
||||
# 打印表格
|
||||
|
||||
PrintTable = prettytable.PrettyTable()
|
||||
|
||||
PrintTable.field_names = KANO_Report.columns.tolist()
|
||||
|
||||
for Index in KANO_Report.index.tolist():
|
||||
|
||||
PrintTable.add_row(KANO_Report.loc[Index])
|
||||
|
||||
PrintTable.align["Requirement_Label"] = "l"
|
||||
|
||||
PrintTable.align["A_Score"] = "r"
|
||||
|
||||
PrintTable.align["O_Score"] = "r"
|
||||
|
||||
PrintTable.align["M_Score"] = "r"
|
||||
|
||||
PrintTable.align["I_Score"] = "r"
|
||||
|
||||
PrintTable.align["R_Score"] = "r"
|
||||
|
||||
PrintTable.align["Q_Score"] = "r"
|
||||
|
||||
PrintTable.align["Better_Score"] = "r"
|
||||
|
||||
PrintTable.align["Worse_Score"] = "r"
|
||||
|
||||
PrintTable.float_format["A_Score"] = ".2"
|
||||
|
||||
PrintTable.float_format["O_Score"] = ".2"
|
||||
|
||||
PrintTable.float_format["M_Score"] = ".2"
|
||||
|
||||
PrintTable.float_format["I_Score"] = ".2"
|
||||
|
||||
PrintTable.float_format["R_Score"] = ".2"
|
||||
|
||||
PrintTable.float_format["Q_Score"] = ".2"
|
||||
|
||||
PrintTable.float_format["Better_Score"] = ".2"
|
||||
|
||||
PrintTable.float_format["Worse_Score"] = ".2"
|
||||
|
||||
print("附表 各需求的KANO评价维度计算结果:")
|
||||
|
||||
print(
|
||||
PrintTable.get_string(
|
||||
fields=[
|
||||
"Requirement_Label",
|
||||
"A_Score",
|
||||
"O_Score",
|
||||
"M_Score",
|
||||
"I_Score",
|
||||
"R_Score",
|
||||
"Q_Score",
|
||||
]
|
||||
.assign(
|
||||
魅力属性=lambda dataframe: dataframe["魅力属性"].apply(
|
||||
lambda cell: f"{cell:.2f}"
|
||||
),
|
||||
期望属性=lambda dataframe: dataframe["期望属性"].apply(
|
||||
lambda cell: f"{cell:.2f}"
|
||||
),
|
||||
必备属性=lambda dataframe: dataframe["必备属性"].apply(
|
||||
lambda cell: f"{cell:.2f}"
|
||||
),
|
||||
无差异属性=lambda dataframe: dataframe["无差异属性"].apply(
|
||||
lambda cell: f"{cell:.2f}"
|
||||
),
|
||||
反向属性=lambda dataframe: dataframe["反向属性"].apply(
|
||||
lambda cell: f"{cell:.2f}"
|
||||
),
|
||||
可疑结果=lambda dataframe: dataframe["可疑结果"].apply(
|
||||
lambda cell: f"{cell:.2f}"
|
||||
),
|
||||
满意系数=lambda dataframe: dataframe["满意系数"].apply(
|
||||
lambda cell: f"{cell:.2f}"
|
||||
),
|
||||
不满意系数=lambda dataframe: dataframe["不满意系数"].apply(
|
||||
lambda cell: f"{cell:.2f}"
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
print("字段说明:")
|
||||
save_as_workbook(worksheets=[("Sheet1", kano)], workbook_name="result.xlsx")
|
||||
|
||||
print(
|
||||
"1)Requirement_Label为需求名称,A_Score为兴奋型需求分数,O_Score为期望型需求分数,M_Score为必备型需求分数,I_Score为无差型需求分数,R_Score为反向型需求分数,Q_Score为可疑型需求分数。"
|
||||
)
|
||||
|
||||
print("")
|
||||
|
||||
print("3.3 定义需求类型和Better-Worse分数")
|
||||
print("")
|
||||
|
||||
# 以KANO评价维度中最高分定义需求类型
|
||||
Requirement_Types = list(
|
||||
KANO_Report[
|
||||
["A_Score", "O_Score", "M_Score", "I_Score", "R_Score", "Q_Score"]
|
||||
].idxmax(axis="columns")
|
||||
)
|
||||
|
||||
# 通过列名截取需求类型(第一位、'_'左侧字符串)
|
||||
Requirement_Types = [
|
||||
x[0 : x.find("_")] for x in Requirement_Types if isinstance(x, str)
|
||||
]
|
||||
|
||||
KANO_Report["Requirement_Type"] = Requirement_Types
|
||||
|
||||
# 计算Better分数
|
||||
KANO_Report["Better_Score"] = (
|
||||
(KANO_Report["A_Score"] + KANO_Report["O_Score"])
|
||||
/ (
|
||||
KANO_Report["A_Score"]
|
||||
+ KANO_Report["O_Score"]
|
||||
+ KANO_Report["M_Score"]
|
||||
+ KANO_Report["I_Score"]
|
||||
)
|
||||
* 100
|
||||
)
|
||||
|
||||
# 计算Worse分数
|
||||
KANO_Report["Worse_Score"] = (
|
||||
-1
|
||||
* (KANO_Report["O_Score"] + KANO_Report["M_Score"])
|
||||
/ (
|
||||
KANO_Report["A_Score"]
|
||||
+ KANO_Report["O_Score"]
|
||||
+ KANO_Report["M_Score"]
|
||||
+ KANO_Report["I_Score"]
|
||||
)
|
||||
* 100
|
||||
)
|
||||
|
||||
# 打印表格
|
||||
|
||||
PrintTable = prettytable.PrettyTable()
|
||||
|
||||
PrintTable.field_names = KANO_Report.columns.tolist()
|
||||
|
||||
for Index in KANO_Report.index.tolist():
|
||||
|
||||
PrintTable.add_row(KANO_Report.loc[Index])
|
||||
|
||||
PrintTable.align["Requirement_Label"] = "l"
|
||||
|
||||
PrintTable.align["Requirement_Type"] = "r"
|
||||
|
||||
PrintTable.align["Better_Score"] = "r"
|
||||
|
||||
PrintTable.align["Worse_Score"] = "r"
|
||||
|
||||
PrintTable.float_format["Better_Score"] = ".2"
|
||||
|
||||
PrintTable.float_format["Worse_Score"] = ".2"
|
||||
|
||||
print("附表 各需求的KANO评价维度计算结果:")
|
||||
|
||||
print(
|
||||
PrintTable.get_string(
|
||||
fields=["Requirement_Label", "Requirement_Type", "Better_Score", "Worse_Score"]
|
||||
)
|
||||
)
|
||||
|
||||
print("字段说明:")
|
||||
|
||||
print("1)Requirement_Label为需求名称,Requirement_Type为需求类型。")
|
||||
|
||||
print(
|
||||
"2)A为兴奋型需求:表示产品具有该种需求,则用户满意度会提高;没有该种需求,则用户满意度不会降低。建议给予P3关注。"
|
||||
)
|
||||
|
||||
print(
|
||||
"3)O为期望型需求:表示产品具有该种需求,则用户满意度会提高;没有该种需求,则用户满意度会降低。建议给予P1关注。"
|
||||
)
|
||||
|
||||
print(
|
||||
"4)M为必备型需求:表示产品具有该种需求,则用户满意度不会提高;没有该种需求,则用户满意度会降低。建议给予P2关注。"
|
||||
)
|
||||
|
||||
print(
|
||||
"5)I为无差型需求:表示产品具有该种需求,则用户满意度不会提高;没有该种需求,则用户满意度不会降低。建议给予P4关注。"
|
||||
)
|
||||
|
||||
print("6)R为反向型需求:建议给予关注。")
|
||||
|
||||
print("7)Q为可疑型需求:建议给予关注。")
|
||||
|
||||
print(
|
||||
"8)Better_Score为Better分数。表示如果产品具有某种需求,则用户满意度会提高,数值越大提高越大。"
|
||||
)
|
||||
|
||||
print(
|
||||
"9)Worse_Score为Worse分数。表示如果产品没有某种需求,则用户满意度会下降,数值越小下降越大。"
|
||||
)
|
||||
|
||||
print("")
|
||||
print("已完成")
|
||||
|
|
|
|||
Binary file not shown.
Loading…
Reference in New Issue